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General Jacobi Identity Revisited
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In a previous paper (Nishimura, 1997) we probed the deeper structure of the
Jacobi identity of vector fields with respect to Lie brackets within the realm of
synthetic differential geometry to find what might be called the general Jacobi
identity of microcubes. The main objective of this paper is to present a less
esoteric and more lucid proof of it.

INTRODUCTION

Kock and Lavendhomme (1984) have developed a theory of micro-
squares in which Lie brackets of vector fields on a microlinear space M can
be expressed as strong differences of their associated microsquares on M.
Nishimura (1997) took a step forward to find that the Jacobi identity of vector
fields on M with respect to Lie brackets is reverberation of a deeper and
more fundamental identity of microcubes on M which might be called the
general Jacobi identity. Though its proof there was thoroughly correct and
exact, the exposition might appear somewhat precipitous and esoteric. The
principal objective of this paper is to elaborate it into a less esoteric and
more comprehensible one.

The main text of the paper consists of three sections, the first two of
which are a brief review of Kock and Lavendhomme (1984) and Nishimura
(1997) and are intended mainly to fix our notation and prepare the reader
for more advanced quasi-colimit diagrams in the last section. The first and
second sections are devoted to simplicial objects and strong differences,
respectively. The gigantic quasi-colimit diagram of small objects in our previ-
ous paper (Nishimura, 1997, Lemma 3.3) is successfully divided into a few
more manageable and more accessible ones in the last section. In particular,
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the core of the proof of the general Jacobi identity will be crystallized into
an elegant quasi-colimit diagram of small objects in Theorem 3.5.

We assume that the reader is familiar with Lavendhomme’s (1996)
readable textbook on synthetic differential geometry up to Chapter 3. We
choose once and for all, a microlinear space M, which shall be fixed throughout
the paper. The extended set of real numbers including infinitesimal ones is
denoted by R and is expected to satisfy the general Kock axiom. We denote
{d e |R‘a’2 = 0} by D as usual. Elements of D are usually denoted by d
with or without subscripts. As is usual in synthetic differential geometry, the
reader should presume that we are working in a non-Boolean topos, so that
the principle of excluded middle and Zorn’s lemma should be avoided. But
for these two points, we would feel that we are working in the standard
universe of sets.

1. SIMPLICIAL OBJECTS

In this section we distinguish a clear-cut class of small objects. Let n
be a natural number and n the set consisting exactly of 1, 2, ..., n. Let A,
be the set of finite sequences (i, . .., i) iIn n with i1 < --- < jrand k = 2.
Given a finite subset p of Ay, we define a small object D"{ p} as follows:

(.1) D'p}={d,....d) € D'd ...d, =0 for any

(il, cee, l'k) S p}

If pisempty, D"{ p} is D" itself. If p is A,, then D"{ p} is D(n) in standard
terminology. Small objects of the form D"{ p} are called simplicial objects
of degree n. If p C g C A,, then D"{ g} is a subset of D"{ p}, in which the
canonical injection of D"{ g} into D"{ p} is generally denoted by i. Given
two simplicial objects D™{ p} and D"{ g} of degrees m and n, respectively,
we define a simplicial objects D"{ p} & D"{ q} to be D"™{p & g}, where

12) p®a=pU((Gi+m. . jt+mlGn.. . .joeaq
Ul j+ml<ismi1<j<n

By way of example, D(m) & D(n) is D(m + n). Simplicial objects D"{ p}
and D"{ g} can naturally be regarded as subsets of D"{p} & D"{ g}. Since
the operation & is associative, we can combine any finite number of simplicial
objects by b without bothering about how to insert parentheses. Given
morphisms of simplicial objects (i.e., mappings induced by their correspond-
ing homomorphisms of Weil algebras) B;: D"{ p;} = D"{p} (1 =i =< n),
there exists a unique function B: D"{ p;} B --- b D™{ p,} = D"{ p} whose
restriction to D™{ p;} coincides with B; for each i. We denote this [ by
Bi & - B P
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Given a simplicial object D"{ p}, we denote by T2"'®i(M) the set of all
functions from D"{ p} to M. In particular, T°(M) is the set of tangent vectors
to M, T (M) is the set of microsquares on M, and ™ (M) is the set of
microcubes on M. It is not difficult to see that, given mappings Y
D"{p;} > M (1 =i = n)with y;(0) = --- = v,(0), there exists a unique
mapping €y, y,: D™{ pi} & -+ & D™{ p,} = M whose restriction to each
ith axis coincides with ;.

We note in passing that Lavendhomme and Nishimura (1998) have
developed a synthetic theory of differential forms based on simplicial objects.
The general theory of simplicial objects in synthetic differential geometry
will be discussed elsewhere.

2. STRONG DIFFERENCES
The following proposition is taken from Lavendhomme (1996, §3.4).
Proposition 2.1. The diagram

DQ)——

i lw
D? —(p—>D3{(1, 3), (2, 3)}

is a quasi-colimit diagram of small objects, where

2.1) o(di, dr) = (di, d2, 0)
(2.2) V(di, d») = (di, da, did>)

for any (di, d») € D>
As a direct corollary of the above proposition we have:

Proposition 2.2. For any Y1, Y2 € TA(M), if 71‘0(2) = Yz‘j_)(z), then there
exists a unique y: D*{(1, 3), (2, 3)} > M withy @ = yjand ¥y~ { = 7a.

We will write gy, y,) for y in the above proposition. The strong difference
Y2 = 7¥1 is defined to be the tangent vector d € D= g(y,,y,)(0, 0, d) to M.
By relativizing Proposition 2.1 we have:

Proposition 2.3. The diagram

D2, 3)) ——— D’

] !

D’} 7(p73—>04{(2, 4), (3, 4))
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is a quasi-colimit diagram of small objects, where

(2.3)  @i(dy, da, ds) = (di, da, d3, 0)
(2.4) i(di, d>, d3) = (dy, do, d3, dods)

for any (di, da, d3) € D’.
As a direct corollary of the above proposition we have:

Proposition 2.4. For any Vi, Y2 € TS(M), ifyl‘pﬂ(zﬁ)} = ’YQ‘D3<(2’3)}, then
there exists a unique y: D*{(2, 4), (3, 4)} & M withy - @] =y, and y =
= 'Yz_

We will write g(y, v, for ¥ in the above proposition. The strong difference
Y2 T Vi is defined to be the microsquare (di, d») € DZHg(IYI,yz)(a’l, 0, 0,
d>) on M.

An appropriate variant of Proposition 2.3 readily yields:

Proposition 2.5. For any Y1, Y2 € TS(M), ifY1‘D3<(1,3)} = 72‘03((1,3)}5 then
there exists a unique y: D*{(1, 4), (3, 4)} = M with y =~ @3> = y; and 7y
V3 = y,, where functions @3, U3: D* = D*(1, 4), (3, 4)} go as follows:

(2.5)  @3(d1, da, ds) = (di, da, d3, 0)
(2.6) i(dy, do, ds) = (dy, do, d3, dids)

We will write gfy, v, for ¥ in the above proposition. The strong difference
Y2 + 71 is defined to be the microsquare (di, d2) € D*~ giy 420, di, 0,
d>) on M.

Again an appropriate variant of Proposition 2.3 readily yields:

Pl’OpOSl.ll'Ofl 2.6. For any Y1, Y2 € TS(M), ifyl‘pﬂ(l,z)} = ’YZ‘DSKI’Z)}, then
there exists a unique v: D*{(1, 4), (2, 4)} = M with Y =~ @3 = vy, and vy
U3 = 72, where functions @3, 3: D* = DY(1, 4), (2, 4)} go as follows:

(2.7)  Qi(dy, da, ds) = (di, da, d3, 0)
(2.8) Ui(dy, da, d3) = (di, do, ds, did>)

We will write giy, v, for ¥ in the above proposition. The strong difference
Y2 5 V1 is defined to be the microsquare (di, d») € D%g%mz)(o, 0, di,
d>) on M.

The general Jacobi identity goes as follows:

Theorem 2.7. Let Y123, Y132, Y213, Y231, Y312, Y321 € TS(M) As long as
the following three expressions are well defined, they sum up only to vanish:

(2.9) (Y123 T Y132) = (Y231 T Va21)
(2.10) (Y231 5 Y213) = (V312 7 Y132)
(2.11) (Y312 5 ¥321) = (Yizs 5 Y213)
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For the relationship of the above identity to the well-known Jacobi
identity of vector fields, the reader is referred to Nishimura (1997, Theo-
rem 3.2).

3. THE GENERAL JACOBI IDENTITY

This section is devoted completely to a proof of Theorem 2.7. Let us
begin with the following result:

Proposition 3.1. The diagram

D) ——H 5 ph2. 4y, (3. 4))

.1 1
1li4 n2

DH(2,4), 3, 4)} — A

is a quasi-colimit diagram of small objects with its quasi-colimit E, where:

(3.1) E1]is D'{(2, 6), (3, 6), (4, 6), (5, 6), (1, 7), (2, 7),
(3.7, 47, (5 7, (6,7, (2,4, (2,5, (3,4, 3, 5.
(3.2)  ila(di, d2) = (dy, 0, 0, db) for any (di, &) € D(2).
(33) T]%(dh dz, d3, d4) = (d1, dz, d3, 0, 0, d4, 0) for any
(di, do, ds, dy) € DH(2, 4), (3, 4)}.
(34) T]%(dl, dz, d3, d4) = (dl, 0, 0, dz, d3, d4, d1d4) for any
(di, do, ds, dy) € DY(2, 4), (3, 4)}.

Proof. The so-called general Kock axiom warrants that functions Y, Y2:
D*(2, 4), (3,4)) > Rand v: E[1] = R should be polynomials of infinitesi-
mals in D with coefficients in R of the following forms:

(3.5 vi(di, dr, d3, ds) = a + ardi + axdr + azds + asds

+ apdidy + aizdids + awudids + andyds + aididads
(36) 'Yz(dl, dz, d3, d4) =b + bldl + bzdz + b3d3 + b4d4

+ budids + bizdids + budids + bydads + biasdidads
(37) 'Y(dl, dz, d3, d4, d5, d6, d7) =c + C1d1 + C2d2 + C3d3

+ cads + csds + cods + c1d7 + ciadidy + cizdids

+ cuadids + cisdids + ciedids + co3dards + casdads

+ cusdidads + crasdidads

The condition that y; = ils = y>»  ils is equivalent to the following condition:
(3.8) a =b,a; = by, and a4 = ba.

Therefore it is not difficult to see that y; = ifs = Y2 = ils exactly when there
exists v: E[1] > R with y “ i = yyand Y~ mb = va, in which 7 is to be
of the following form:
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(3.9 v(di, dr, ds, ds, ds, ds, d7) = a + aidi + axd> + azds
+ bads + bids + asds + (b1a — aia)dr + andid>
+ aizdids + biadids + bisdids + aadide + axdads
+ basdads + ainsdidads + bindidads

This means that the above diagram is a quasi-colimit diagram of small
objects. m

We will write 1, 13, 1}, and 1 for ni = @i, i “ Vi, )~ @i, and 3~ V3,
respectively. That is to say, for any (di, d», d;) € D, we have

(3.10) U(dy, d>, ds) = (dv, d>, ds, 0, 0, 0, 0)

(3.11) U(dy, do, ds) = (dv, do, ds, 0, 0, dods, 0)
(3.12) U(dy, d>, ds) = (d, 0, 0, ds, ds, 0, 0)

(3.13) W(dy, do, ds) = (d, 0, 0, do, ds, dods, didods)

As a direct corollary of Propositions 2.3 and 3.1 we have:

Proposition 3.2. For any Y1, Y2, V3, Y4 € T°(M), if the expression (V4 +
Y1) = (Y2 = Y1) is well defined, then there exists a unique v € TE(M)
such that y "1 = v, (i = 1, 2, 3, 4).

We will write h{y, y,y374 for y is the above proposition. We note that
for any (di, da, ds, ds) € D*{(2, 4), (3, 4)},

(314) g(lylﬂyz)(dl, dZ, d}, d4) = h(lyl,yz,Y3,Y4)(d15 dZ, d3a 07 07 d4a 0)
(315) g(1y3ﬂy4)(d1, dZ, d}, d4) = h(lyl,yz,yg,Y4)(d15 Oa Oa dZ, d3a d49 d1d4)

Therefore, for any (di, d») € D?, we have

(3.16) (Y2 T Y)(d1, d2) = hiyyaysga(di, 0, 0,0, 0, da, 0)
(A7) (Y4 T ¥3)(d1, d) = hiypaysga(d, 0,0, 0,0, da, didy)

(3.16) and (3.17) imply that for any (di, da, d3) € D*{(1, 3), (2, 3)},
(3.18)  guaryiyasra(dis doy d3) = hiyyyapsyn(di, 0,0, 0,0, do, d3)

Therefore, for any d € D, we have

(319 ((vs T v3) = (v2 T Y)d) = hippan(0, 0, 0,0, 0,0, d)

We will write E[2] for D'{(1, 6), (3, 6), (4, 6), (5, 6), (1, 7), (2, 7),
(3,7, @&, 7), 05,7, 0,7, {, D, (1, 5), (3,4), (3, 5}. We define functions
1%, 1%, 1%, and 4 from D® to E[2] as follows:

(3.20) (d\, ds, d3) = (dy, da, d3, 0, 0, 0, 0)

(3.21) (dy, ds, d3) = (di, da, d5, 0, 0, dids, 0)
(3.22) (dy, d>, d3) = (0, d>, 0, ds, di, 0, 0)

(3.23) i(dy, dr, d3) = (0, db, 0, ds, dy, dids, didads)
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By the same token as in Proposition 3.2 we have:

Propovmon 3.3. For any Y1, Y2, Y3, Y4 € T°(M), if the expression (V4 +
Y3) — (yz v1) is well defined, then there exists unique Y € T#2(M) such
that y v =y, (i = 1,23, 4).

We will write hfy, y,.y5.4s for ¥ in the above proposition. By the same
token as in (3.19) we have that for any d € D,

(324) ((va 5 73) = (Y2 7 YONd) = hiyp090(0, 0, 0,0, 0, 0, d)

We will write E[3] for D'{(1, 6), (2, 6), (4, 6), (5, 6), (1, 7), (2, 7),
(3 7, (4, 7), (5 7), (6, 7) (1, 4), (1, 5), (2, 4), (2, 5)}. We define functions
11, 13, 1%, and 4 from D° to E[3] as follows:

(3.25) (dy, ds, d3) = (dy, da, d3, 0, 0, 0, 0)

(3.26) B(dy, ds, d3) = (di, d>, d5, 0, 0, did>, 0)
(3.27) B(d1, d, d3) = (0, 0, ds, dy, d», 0, 0)

(3.28) (d1, dr, d3) = (0, 0, ds, dy, da, did>, didrds)

By the same token as in Proposition 3.2 we have:

Proposition 3.4. For any Y1, Y2, Y3, Y4 € T°(M), if the expression (Y4 5
Y3) = (Y2 5 71) is well defined, then there exists unique Y € T (M) such
that y v =v,(=1,2,3,4).

We will write h{y, y,.y5.4s for ¥ in the above proposition. By the same
token as in (3.19) we have that for any d € D,

(329) ((va ¥ 73) = (Y2 F YO)d) = hiyipysra(0, 0, 0,0, 0,0, d)

The crucial step in the proof of Theorem 2.7 is epitomized by the
following theorem.

Theorem 3.5. The diagram consisting of objects

(3.30)  E[1], E[2], 3]

(3.31) Hy, Has, Hzy, all of which are equal to D* & D’

(3.32) G, which is equal to D¥{(2, 4), (3, 4), (1, 5), (3, 5), (1 6), (2, 6),
4,5), (4,6), (5 6), (1,7, (2,7, 3,7, 4, 7), (57, 6,7),
(1, 8), (2, 8), (3, 8), (4, 8), (5, 8), (6, 8), (7, 8)}

and of morphisms

(3.33)  hix: Hix = E), hix: Hix = H2J, b33 Hy» = E[2],
h33: Hay = H[3), hd: Hyy = H3], hbi: Hy — H]IJ
(3.34) ki E1] > G, ko: 2] = G, ks: E[3] = G

is a quasi-colimit diagram of small objects, where
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(3.35)

(3.26)

(3.27)

(3.38)

Nishimura

h=d®d, h=ud®d=3%48 1 =14+,
i =16 %4 =udu

ki(dy, do, ds, da, ds, des, d7)

= (d\, dy + dy, d3s + ds, ds — drds — duds, —d ds, dida,
d7 + didrds, didrds)

for any (dl, dy, ds, da, ds, dg, d7) S E[l]

ka(dy, do, ds, da, ds, des, d7)

= (d\ + ds, d>, d3 + ds, —dods, de — dids — duds, did>,
dadads, dr)

for any (dl, dy, ds, da, ds, dg, d7) S E[Z]

ks(dy, db, ds, ds, ds, ds, d7)

= (d| + dy, d» + ds, ds, —duds, —d\ds, ds, —d7, —d7, + d3dads)
for any (d1, dz, d3, d4, ds, d6, d7) (S E[3]

Proof. The so-called general Kock axiom warrants that functions 7;:
E1]1—> R, y2: 2] = R, v3: 3] > R, and y: G — R should be polynomials
of infinitesimals in D with coefficients in R of the following forms:

(3.39)

(3.40)

(3.41)

(3.42)

Yi(dy, do, ds, dy, ds, ds, d7) = a' + ald, + abdy + aid;
+ a}wl4 + a%ds + a},d(, + a%d7 + a%zchdz + a%3d1d3

+ a%4d1d4 + a%5d1d5 + a%gdld(, + a§3d2d3 + ai5d4d5

+ alndidsds + alasdidads

Yody, do, ds, da, ds, ds, d7) = a* + aidy + dddy + aid;
+ a§d4 + a§d5 + a%d(, + a%d7 + a%zdldz + a%3d1d3

+ asdhdy + dadads + @3sdads + adechds + adsdads

+ daindidsds + adasdrdads

Yi(di, da, ds, da, ds, ds, d7) = @’ + aidy + @3dy + aids
+ aﬁd4 + a%ds + aéd(, + a%d7 + a%zchdz + a%3d1d3

+ @hsdhdy + alydsds + adsdids + alsdads + adsdads

+ aindidads + adssdrdads

Y(di, d», d3, ds, ds, ds, d7, ds) = b + bid1 + bad>

+ bads + bads + bsds + beds + bid; + bsds + biadids
+ biadids + biadids + bazdads + basdads + biedsds

It is easy to see that for any (di, da, ds, ds, ds, ds) € D* & D,

(3.43)

(Y1~ hha)(dy, da, ds, da, ds, ds)

=d' + ald\ + add> + aids + abdrds + alrdids
aizdids + alsdidods + adzdods + alrzdidads

a%d4 + aids + a%d(, + a%4d4d5 + a%5d4d6 + ai5d5d6
alasdadsds

al + a{dl + a%dz + a§d3 + a%zdldz + a{3d1d3

(a}, + a§3)d2d3 + (a%g + a%23)d1dzd3 + a{d4

aids + a%d(, + a%4d4d5 + a%5d4d6 + ai5d5d6
alasdadsds

I+
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(3.44) (72 h%z)((h, da, ds, da, ds, de)

=4+ a%dz + aid3 + a%d1 + a%d1d3 + a%d1d2d3
@adrds + a3sdidy + axedidads + aisdds
a%45d1d2d3 + a%d4 + a%d5 + a%d(, + a%2d4d5
atsdids + adzdsds + atydadsds
a2 + a%dl + a%dz + a§d3 + a%5d1d2
(a% + a%5)d1d3 + a%4d2d3
a% + a%g + a%45)d1d2d3 + a%d4 + a%ds + a%d(,
ahdids + atsdads + andsds + atrsdadsds

I+ + +

++ +

Therefore the condition that y; = i1, = y, - hi, is equivalent to the following
conditions as a whole:

_ 2
5 ars, d4s — a3

1 o 2 2 1 2
(3.48) ais + aixz = a7 + ax + axs, aus = ain

N

(3.45) da' =d*

I 2 1 _ 2 1 _ 2 1 _ 2 1 _ 2 1_ 2
(3.46) ay — ds, a — dz, d3 — d4, d] — di, d4 — $2, d5 — 43

[T TS TR 2 U 2 1T o
(3.47) a2 = axs, ais = as + ais, as + axn = ax, ais = at,

1 20

1

1

1

By the same token the condition that y» © 433 = y3 = h3; is equivalent to the
following conditions as a whole:

(3.49) o 3

(3.50) @ =ad, a3 = a3, ai = ai, a3 = a3, ai = a3, a3 = aj

(3.51) a3z = ads, air = @ + dis, ag + ais = @k, @5 = a3,
a%s = a%z, azzts = a%a

2 2 s 3 32 _ o3
(3.52) azs + anz = a7 + aze + azss, arxus = ain

By the same token again the condition that y3 ~ 43, = y; = h}; is equivalent
to the following conditions as a whole:

(3.53) o =4d

(3.54) ad=db,al =al, a3 =al, a3 =ab, ad = al, a3 = &b

(3.55) ais = als, @ = as + abs, ai + atr = als, ada = als,
a%s = aéa, a;ts = a%z

(3.56) ais + ain = ab + ale + alss, adas = aixn

Three conditions (3.45), (3.49), and (3.53) can be combined into
(3.57) da' =d* =4d

Three conditions (3.46), (3.50), and (3.54) are to be superseded by the follow-
ing three conditions as a whole:

(3.58) al =at = al =
(359) ab=a} =a = at = at
(3.60) ai=dl=a=4dl
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Three conditions (3.47), (3.51), and (3.55) are equivalent to the following

six conditions as a whole:

(3.61) al, =dh =ah

(3.62) als = afs = ais

(3.63) abs = a3 = ah

(3.64) als = alr + a3, als = aly — a5, aks =
(3.65) @ = a3 + aé, a5 = ai» — a3, ais =
(3.66) a3 = als + a3, a3s = @3 — ai, ais =

Conditions (3.48), (3.52), and (3.56) imply that

(3.67) ay + &7 + @

(a3s + aiz — als — alss) + (als +
— @us) + (a3 + atry — ais — aiss)
(a3s + aiz — als — ain) + (als +
ain) + (a3 + ats — ats — alxn)
=0

Therefore conditions (3.48), (3.52), and (3.56) are
following conditions as a whole:

1
azs
3
ais
3
ans

1 2
a3 — dze

1 2
a3 — dze

to be replaced by the

(3.68) alss — alys = & + dde — as
(3.69) a%45 - a%23 = a% + 0%6 - a§6
(3.70) adss — als = a7 + a3 — ale
(3.71) alss = ai» and adas = ain
(372) d+d+ad=0
Indeed the condition that a3ss = alns is derivative from the above five
conditions:
(373) a§45
= ain + a7 + a3 — als [(3.70)]
= &s + a7 + a6 — als  [(3.71)]
=ain + a1 — a6 + a7 + ax  [(3.69)]
=alys + &b — a6 + & + dde [(3.71)]
=aln+d + &+ d [(3.68)]
= ain [(3.72)]
Now it is not difficult to see that yi1 = ila = V2 = his, Y2 = 33 = 73

M3, and v3 b = v,
(3.74)

h}1 exactly when there exists y: G = R with y; =
1, 2, 3), in which 7 is of the following form:

Y(dy, dy, d3, dy, ds, ds, dy, d3) = a' + ald, + abd>

+ a§d3 + aéd4 + a%d5 + aéd(, + a%d7 + a%dg + a%zdldz
+ a%3d1d3 + a%6d1d4 + (a%3 + aé)d2d3 + a%gdzds

+ a§6d3d6
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This completes the proof of the theorem. m
As a direct corollary of Theorem 3.5 we have:

Theorem 3.6. For any Yi23, Y132, Y213, Y231, Y312, Y321 € T3(M), if all
expressions (2.9)—(2.11) are well defined, then there exists a unique y €
TOM) such that

(3.75) Y ki = h(Y%zl Y231,Y132:Y123)
(3.76) Y kr = h(YHZ Y312,Y213:Y231)
(3-77) Y ks = h(an Y123.Y321,Y312)

Proof. Since

(3.78) h(lYm Y231:Y132:Y123) h%Z

= l(Ym Y132)

= h(Ym Y312,Y213,Y231) h%Z
(3.79) h(zmz ¥312,Y213,Y231) h23

= l(Y%lZ Y213)

= h(an Y123,Y321,Y312) h%3
(3.80) h(San Y123.Y321,Y312) h3l

= l(mz Y321)

= h(Y%zl Y231,Y132:Y123) h%l

the desired conclusion follows directly from Theorem 3.5. m

We will write m(y 53.y132.7213.7230.7312.7320) OF m for short for the above 7v.

Once the above theorem is established, we can proceed in the same
lines as in Nishimura (1997, pp. 1117-1118) so as to get the general Jacobi
identity. Indeed we note that for any d € D,

(3.81)  ((Yi2z 7 V132) = (Y231 T V320))(d)
= h(1Y321«Y231«Y132«Y123)(0a Oa Oa 0, 0, 0, d) [(3-19)]
= m(0, 0, 0, 0, 0, 0, d, 0)

(3.82)  ((v231 7 Va213) = (Y312 7 YV132))(d)
= h(2Y132«Y312«Y213«Y231)(Oa 0,0,0,0,0,d) [(3.24)]
= m(0, 0, 0,0,0,0,0, d)

(3.83)  ((v312 % V321) = (Y123 5 Ya13))(d)
= h(3Y213«Y123«Y321«Y312)((); 0,0,0,0,0,d) [(3.29)]
= m(0, 0,0,0,0,0, —d, —d)

Therefore, letting #1, ©, and #3 denote expressions (2.9)—(2.11) in order,
we have

(384) l(tl,tz,tg)(dla dZa d3)

= (0, 0,0,0,0,0,d — ds, d» — ds) for any
(dv, d2, d3) € D(3)
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This means that for any d € D,

(3.85) (11 + 6o + t3)(d)
= l(tlﬂtzﬂts)(da d, d)
= m0,0,0,0,0,0,d —d d— d)
= m(0, 0, 0, 0, 0, 0, 0, 0)

This completes the proof of Theorem 2.7. m
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